Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.566
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biotechnol J ; 19(5): e2300581, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719587

RESUMO

Human interleukin-3 (IL3) is a multifunctional cytokine essential for both clinical and biomedical research endeavors. However, its production in Escherichia coli has historically been challenging due to its aggregation into inclusion bodies, requiring intricate solubilization and refolding procedures. This study introduces an innovative approach employing two chaperone proteins, maltose binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a'), as N-terminal fusion tags. Histidine tag (H) was added at the beginning of each chaperone protein gene for easy purification. This fusion of chaperone proteins significantly improved IL3 solubility across various E. coli strains and temperature conditions, eliminating the need for laborious refolding procedures. Following expression optimization, H-PDIb'a'-IL3 was purified using two chromatographic methods, and the subsequent removal of the H-PDIb'a' tag yielded high-purity IL3. The identity of the purified protein was confirmed through liquid chromatography coupled with tandem mass spectrometry analysis. Biological activity assays using human erythroleukemia TF-1 cells revealed a unique two-step stimulation pattern for both purified IL3 and the H-PDIb'a'-IL3 fusion protein, underscoring the protein's functional integrity and revealing novel insights into its cellular interactions. This study advances the understanding of IL3 expression and activity while introducing novel considerations for protein fusion strategies.


Assuntos
Escherichia coli , Interleucina-3 , Isomerases de Dissulfetos de Proteínas , Proteínas Recombinantes de Fusão , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Interleucina-3/metabolismo , Interleucina-3/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Linhagem Celular Tumoral , Solubilidade
2.
Viral Immunol ; 37(3): 149-158, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573237

RESUMO

Hepatitis B Virus (HBV) is posing as a serious public health threat mainly due to its asymptomatic nature of infection in pregnancy and vertical transmission. Viral sensing toll-like receptors (TLR) and Interleukins (IL) are important molecules in providing an antiviral state. The study aimed to assess the role of TLR7-mediated immune modulation, which might have an impact in the intrauterine transmission of HBV leading to mother to child transmission of the virus. We investigated the expression pattern of TLR7, IL-3, and IL-6 by RT-PCR in the placentas of HBV-infected pregnant women to see their role in the intrauterine transmission of HBV. We further validated the expression of TLR7 in placentas using Immunohistochemistry. Expression analysis by RT-PCR of TLR7 revealed significant downregulation among the Cord blood (CB) HBV DNA positive and negative cases with mean ± standard deviation (SD) of 0.43 ± 0.22 (28) and 1.14 ± 0.57 (44) with p = 0.001. IL-3 and IL-6 expression revealed significant upregulation in the CB HBV DNA-positive cases with p = 0.001. Multinomial logistic regression analysis revealed that TLR7 and IL-3 fold change and mother HBeAg status are important predictors for HBV mother to child transmission. Immunohistochemistry revealed the decreased expression of TLR7 in CB HBV DNA-positive cases. This study reveals that the downregulation of TLR7 in the placenta along with CB HBV DNA-positive status may lead to intrauterine transmission of HBV, which may lead to vertical transmission of HBV.


Assuntos
Hepatite B , Complicações Infecciosas na Gravidez , Feminino , Humanos , Gravidez , DNA Viral , Antígenos E da Hepatite B , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Transmissão Vertical de Doenças Infecciosas , Interleucina-3 , Interleucina-6/genética , Receptor 7 Toll-Like/genética , Recém-Nascido
3.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566191

RESUMO

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transativadores , Animais , Humanos , Camundongos , Doxorrubicina , Proteína p300 Associada a E1A , Interleucina-3 , Subunidade alfa de Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transativadores/metabolismo
4.
Neurochem Res ; 49(5): 1373-1386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512424

RESUMO

Interleukin 3 (IL-3) is a well-known pleiotropic cytokine that regulates the proliferation and differentiation of hematopoietic progenitor cells, triggering classical signaling pathways such as JAK/STAT, Ras/MAPK, and PI3K/Akt to carry out its functions. Interestingly, the IL-3 receptor is also expressed in non-hematopoietic cells, playing a crucial role in cell survival. Our previous research demonstrated the expression of the IL-3 receptor in neuron cells and its protective role in neurodegeneration. Glutamate, a principal neurotransmitter in the central nervous system, can induce cellular stress and lead to neurotoxicity when its extracellular concentrations surpass normal levels. This excessive glutamate presence is frequently observed in various neurological diseases. In this study, we uncover the protective role of IL-3 as an inhibitor of glutamate-induced cell death, analyzing the cytokine's signaling pathways during its protective effect. Specifically, we examined the relevance of JAK/STAT, Ras/MAPK, and PI3 K signaling pathways in the molecular mechanism triggered by IL-3. Our results show that the inhibition of JAK, ERK, and PI3 K signaling pathways, using pharmacological inhibitors, effectively blocked IL-3's protective role against glutamate-induced cell death. Additionally, our findings suggest that Bcl-2 and Bax proteins may be involved in the molecular mechanism triggered by IL-3. Our investigation into IL-3's ability to protect neuronal cells from glutamate-induced damage offers a promising therapeutic avenue with potential clinical implications for several neurological diseases characterized by glutamate neurotoxicity.


Assuntos
Interleucina-3 , Neuroblastoma , Humanos , Ácido Glutâmico/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Interleucina-3 , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339203

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel expressed on sensory neurons and immune cells. We hypothesize that TRPV1 plays a role in human eosinophil function and is modulated by inflammatory conditions. TRPV1 expression on human eosinophils was examined by qPCR, flow cytometry, and immunohistochemistry, respectively. TRPV1 functionality was analyzed by investigating calcium flux, apoptosis, modulation by cytokines and acidic pH, and CD69 externalization using flow cytometry. Activation of TRPV1 induced calcium influx and prolonged survival. Although eosinophils were not directly activated by TRPV1 agonists, activation by IL-3 or GM-CSF was mainly restricted to TRPV1-positive eosinophils. TRPV1 surface content was increased by acidic pH, IL-3, IL-31, IL-33, TSLP, TNF-α, BDNF, and NGF-ß. Interestingly, TRPV1 was also expressed by eosinophils located in proximity to peripheral nerves in atopic dermatitis (AD) skin. In conclusion, eosinophils express functional TRPV1 channels which are increased by extracellular acidification and AD-related cytokines. Since eosinophils also express TRPV1 in AD skin, our results indicate an important role of TRPV1 for neuroimmune interaction mechanisms in itchy, inflammatory skin diseases, like AD.


Assuntos
Antineoplásicos , Dermatite Atópica , Eosinófilos , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Humanos , Antineoplásicos/metabolismo , Cálcio/metabolismo , Citocinas/metabolismo , Dermatite Atópica/metabolismo , Eosinófilos/metabolismo , Interleucina-3/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/metabolismo
6.
Open Biol ; 14(2): 230456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412963

RESUMO

Cytotoxic T lymphocytes (CTLs) are key effectors of the adaptive immune system that recognize and eliminate virally infected and cancerous cells. In naive CD8+ T cells, T-cell receptor (TCR) engagement drives a number of transcriptional, translational and proliferation changes over the course of hours and days leading to differentiation into CTLs. To gain a better insight into this mechanism, we compared the transcriptional profiles of naive CD8+ T cells to those of activated CTLs. To find new regulators of CTL function, we performed a selective clustered regularly interspaced short palindromic repeats (CRISPR) screen on upregulated genes and identified nuclear factor IL-3 (NFIL3) as a potential regulator of cytotoxicity. Although NFIL3 has established roles in several immune cells including natural killer, Treg, dendritic and CD4+ T cells, its function in CD8+ CTLs is less well understood. Using CRISPR/Cas9 editing, we found that removing NFIL3 in CTLs resulted in a marked decrease in cytotoxicity. We found that in CTLs lacking NFIL3 TCR-induced extracellular signal-regulated kinase phosphorylation, immune synapse formation and granule release were all intact while cytotoxicity was functionally impaired in vitro. Strikingly, NFIL3 controls the production of cytolytic proteins as well as effector cytokines. Thus, NFIL3 plays a cell intrinsic role in modulating cytolytic mechanisms in CTLs.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Linfócitos T Citotóxicos/metabolismo , Interleucina-3/metabolismo , Perforina/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Clin Lymphoma Myeloma Leuk ; 24(4): e130-e137, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38267355

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive myeloid malignancy of the dendritic cell lineage that affects patients of all ages, though the incidence appears to be highest in patients over the age of 60 years. Diagnosis is based on the presence of plasmacytoid dendritic cell precursors expressing CD123, the interleukin-3 (IL-3) receptor alpha, and a distinct histologic appearance. Timely diagnosis remains a challenge, due to lack of disease awareness and overlapping biologic and clinical features with other hematologic malignancies. Prognosis is poor with a median overall survival of 8 to 14 months, irrespective of disease presentation pattern. Historically, the principal treatment was remission induction therapy followed by a stem cell transplant (SCT) in eligible patients. However, bridging to SCT is often not achieved with induction chemotherapy regimens. The discovery that CD123 is universally expressed in BPDCN and is considered to have a pathogenetic role in its development paved the way for the successful introduction of tagraxofusp, a recombinant human IL-3 fused to a truncated diphtheria toxin payload, as an initial treatment for BPDCN. Tagraxofusp was approved in 2018 by the United States Food and Drug Administration for the treatment of patients aged 2 years and older with newly diagnosed and relapsed/refractory BPDCN, and by the European Medicines Agency in 2021 for first-line treatment of adults. The advent of tagraxofusp has opened a new era of precision oncology in the treatment of BPDCN. Herein, we present an overview of BPDCN biology, its diagnosis, and treatment options, illustrated by clinical cases.


Assuntos
Neoplasias Hematológicas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Adulto , Humanos , Pessoa de Meia-Idade , Subunidade alfa de Receptor de Interleucina-3 , Interleucina-3/uso terapêutico , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/tratamento farmacológico , Medicina de Precisão , Doença Aguda , Transtornos Mieloproliferativos/patologia , Neoplasias Cutâneas/patologia , Células Dendríticas/patologia , Biologia
9.
J Surg Res ; 295: 611-618, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096775

RESUMO

INTRODUCTION: Syndecan-1 is a heparan sulfate proteoglycan found in the glycocalyx of vascular endothelial cells. Serum levels of syndecan-1 have repeatedly been demonstrated to increase following traumatic injury and shock, but it is unclear whether syndecan-1 plays an active role in the inflammatory response or is simply a biomarker of a state of hypoperfusion. The aim of this study was to identify the role of syndecan-1 role in the inflammatory process in the absence of trauma. METHODS: Male mice were randomized into five groups (n = 3). Four groups received increasing concentrations of syndecan-1 (1, 10, 100, and 1000pg/mL per blood volume) and a fifth group was given normal saline as a control via intravenous injection. These concentrations were selected based on previous syndecan-1 enzyme-linked immunosorbent assay data acquired following induced hemorrhagic shock in mice resulting in serum levels of 10-6000 pg/mL. Mice from each group were sacrificed at 1-, 4-, and 24-h time points for serum biomarker evaluation. A multiplex enzyme-linked immunosorbent assay was performed to analyze proinflammatory cytokines and chemokines including interleukin (IL)-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, IL-17, monocyte chemoattractant protein-1, TNF-α, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, and normal T cell expressed and presumably secreted levels. Whole blood was analyzed via rotational thromboelastometry in a separate group of mice dosed with syndecan-1 at 1000 pg/mL and compared to sham mice at 1 h. RESULTS: Tumor necrosis factor-α was significantly elevated in the 1000 pg/mL group compared to sham animals. There were no significant changes in IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, monocyte chemoattractant protein--1, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, or normal T cell expressed and presumably secretedat 1, 4, and 24 h for any group when compared to mice receiving saline alone. No significant differences were noted in coagulability between the 1000 pg/mL syndecan-1 group and shams at 1 h CONCLUSIONS: Inflammatory cytokine concentrations did not change with increasing dosage of syndecan-1 within mice at any timepoint, except for an acute change in tumor necrosis factor-α which was transient. Based on our results, syndecan-1 appears to be a biomarker for inflammation rather than an active participant in eliciting an inflammatory response. Further research will focus on the role of syndecan-1 following hemorrhagic shock.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Choque Hemorrágico , Humanos , Masculino , Camundongos , Animais , Interleucina-10 , Interleucina-6 , Células Endoteliais , Fator de Necrose Tumoral alfa , Choque Hemorrágico/complicações , Sindecana-1 , Interleucina-2 , Interleucina-3 , Interleucina-4 , Citocinas , Interleucina-12 , Biomarcadores , Proteínas Inflamatórias de Macrófagos
10.
Cytokine ; 173: 156417, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944421

RESUMO

Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.


Assuntos
Fatores Estimuladores de Colônias , Neoplasias de Cabeça e Pescoço , Humanos , Interleucina-3 , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Citocinas , Granulócitos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral
11.
Stem Cell Reports ; 19(1): 100-111, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38101400

RESUMO

Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.


Assuntos
Interleucina-3 , Leucemia Mieloide Aguda , Camundongos , Humanos , Animais , Interleucina-3/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo
12.
BMC Psychiatry ; 23(1): 830, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957650

RESUMO

BACKGROUND: Major Depressive Disorder (MDD) is a common mental ailment and is the primary reason for disability. It manifests a severe impact on moods, thoughts, and physical health. At present, this disorder has become a concern in the field of public health. Alteration of neurochemicals is thought to be involved in the pathogenesis of many psychiatric disorders. Therefore, we aimed to evaluate serum IL-3 and lipocalin-2 in MDD patients and healthy controls (HCs). METHOD: We included a total of 376 participants in this study. Among them, 196 were MDD patients, and 180 were age-sex-matched HCs. MDD patients were recruited from the Psychiatry Department of Bangabandhu Sheikh Mujib Medical University (BSMMU), but the controls were from different parts of Dhaka. All study participants were evaluated by a psychiatrist using the DSM-5 criteria. To assess the severity of the depression, we used the Hamilton depression (Ham-D) rating scale. Serum IL-3 and lipocalin-2 levels were measured using commercially available enzyme-linked immune-sorbent assay kits (ELISA kits). RESULTS: According to this study, we observed elevated serum levels of IL-3 (1,024.73 ± 29.84 pg/mL) and reduced levels of serum lipocalin-2 (29.019 ± 2.073 ng/mL) in MDD patients compared to HCs (911.11 ± 20.55 pg/mL and 48.065 ± 3.583 ng/mL, respectively). No associations between serum levels of IL-3 and lipocalin-2 and depression severity were observed in patients. CONCLUSIONS: According to the present findings, alterations of serum IL-3 and lipocalin might be associated with the pathogenesis of MDD. These results support that altered serum neurochemicals can serve as early risk assessment markers for depression. Further interventional studies are recommended for a better understanding of the role of IL-3 and lipocalin-2 in the pathophysiology of depression.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/psicologia , Interleucina-3 , Estudos de Casos e Controles , Lipocalina-2 , Bangladesh
13.
Sci Rep ; 13(1): 18976, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923827

RESUMO

Obsessive-compulsive disorder (OCD) is a mental condition that affects many people and is characterized by recurring obsessions and compulsions. It significantly impacts individuals' ability to function ordinarily daily, affecting people of all ages. This study aimed to investigate whether or not the cytokines granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17) are involved in the pathophysiology of OCD. A case-control study with 50 OCD patients and 38 healthy volunteers served as the controls for this investigation. The levels of GM-CSF and IL-17 in the serum of both groups were measured with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the sociodemographic characteristics of the population under study were studied. Based on the findings of this study, OCD patients had significantly elevated levels of IL-17 than the controls, it appears that there may be a function for IL-17 in the pathophysiology of OCD. It was also discovered that the severity of OCD and IL-17 levels had a significant positive correlation. On the other hand, when comparing the levels of GM-CSF, there was no significant difference between the patients and the controls. This study provides evidence supporting the involvement of cytokine IL-17 in the pathophysiology of OCD. This study suggests IL-17 as a diagnostic biomarker for OCD and adds to our knowledge of the function that the immune system plays in this condition.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Transtorno Obsessivo-Compulsivo , Humanos , Estudos de Casos e Controles , Citocinas , Fator Estimulador de Colônias de Granulócitos , Granulócitos , Interleucina-17 , Interleucina-3 , Fator Estimulador de Colônias de Macrófagos
14.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581927

RESUMO

Disease-initiating mutations in the transcription factor RUNX1 occur as germline and somatic events that cause leukemias with particularly poor prognosis. However, the role of RUNX1 in leukemogenesis is not fully understood, and effective therapies for RUNX1-mutant leukemias remain elusive. Here, we used primary patient samples and a RUNX1-KO model in primary human hematopoietic cells to investigate how RUNX1 loss contributes to leukemic progression and to identify targetable vulnerabilities. Surprisingly, we found that RUNX1 loss decreased proliferative capacity and stem cell function. However, RUNX1-deficient cells selectively upregulated the IL-3 receptor. Exposure to IL-3, but not other JAK/STAT cytokines, rescued RUNX1-KO proliferative and competitive defects. Further, we demonstrated that RUNX1 loss repressed JAK/STAT signaling and rendered RUNX1-deficient cells sensitive to JAK inhibitors. Our study identifies a dependency of RUNX1-mutant leukemias on IL-3/JAK/STAT signaling, which may enable targeting of these aggressive blood cancers with existing agents.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Interleucina-3 , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Interleucina-3/genética , Interleucina-3/farmacologia , Leucemia/tratamento farmacológico , Leucemia/genética , Transdução de Sinais
15.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445722

RESUMO

PTPN11 encodes the SHP2 protein tyrosine phosphatase that activates the mitogen-activated protein kinase (MAPK) pathway upstream of KRAS and MEK. PTPN11/Shp2 somatic mutations occur frequently in Juvenile myelomonocytic leukaemia (JMML); however, the role of mutated PTPN11 in lung cancer tumourigenesis and its utility as a therapeutic target has not been fully addressed. We applied mass-spectrometry-based genotyping to DNA extracted from the tumour and matched the normal tissue of 356 NSCLC patients (98 adenocarcinomas (LUAD) and 258 squamous cell carcinomas (LUSC)). Further, PTPN11 mutation cases were identified in additional cohorts, including TCGA, Broad, and MD Anderson datasets and the COSMIC database. PTPN11 constructs harbouring PTPN11 E76A, A72D and C459S mutations were stably expressed in IL-3 dependent BaF3 cells and NSCLC cell lines (NCI-H1703, NCI-H157, NCI-H1299). The MAPK and PI3K pathway activation was evaluated using Western blotting. PTPN11/Shp2 phosphatase activity was measured in whole-cell protein lysates using an Shp2 assay kit. The Shp2 inhibitor (SHPi) was assessed both in vitro and in vivo in a PTPN11-mutated cell line for improved responses to MAPK and PI3K targeting therapies. Somatic PTPN11 hotspot mutations occurred in 4/98 (4.1%) adenocarcinomas and 7/258 (2.7%) squamous cells of 356 NSCLC patients. Additional 26 PTPN11 hotspot mutations occurred in 23 and 3 adenocarcinomas and squamous cell carcinoma, respectively, across the additional cohorts. Mutant PTPN11 significantly increased the IL-3 independent survival of Ba/F3 cells compared to wildtype PTPN11 (p < 0.0001). Ba/F3, NCI-H1703, and NCI-H157 cells expressing mutant PTPN11 exhibited increased PTPN11/Shp2 phosphatase activity and phospho-ERK1/2 levels compared to cells expressing wildtype PTPN11. The transduction of the PTPN11 inactivating mutation C459S into NSCLC cell lines led to decreased phospho-ERK, as well as decreased phospho-AKT in the PTPN11-mutated NCI-H661 cell line. NCI-H661 cells (PTPN11-mutated, KRAS-wild type) were significantly more sensitive to growth inhibition by the PI3K inhibitor copanlisib (IC50: 13.9 ± 4.7 nM) compared to NCI-H1703 (PTPN11/KRAS-wild type) cells (IC50: >10,000 nM). The SHP2 inhibitor, in combination with the PI3K targeting therapy copanlisib, showed no significant difference in tumour development in vivo; however, this significantly prevented MAPK pathway induction in vitro (p < 0.0001). PTPN11/Shp2 demonstrated the in vitro features of a driver oncogene and could potentially sensitize NSCLC cells to PI3K inhibition and inhibit MAPK pathway activation following PI3K pathway targeting.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Interleucina-3/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Oncogenes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Adenocarcinoma/genética
16.
J Forensic Leg Med ; 98: 102559, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37453342

RESUMO

Asphyxia-related deaths have always been a challenging task in the specialty of forensic pathology. Apart from helpful macroscopical signs (e.g., strangulation marks, cyanosis, petechial haemorrhage, and lung edema), recent literature indicates that prolonged asphyxia is sufficient to induce an increase in mast cells (MC). Inflammatory cells migrate from the bone marrow to the lungs, aiding in the diagnosis of fatal asphyxial death. The present study analyzed human lung tissue samples from 90 medico-legal autopsy cases, including 45 asphyxial deaths and 45 controls (non-asphyxial deaths). The cases ranged from 2 to 68 years, with a mean age of 33.23 years. In 90 cases, 74 cases were of males, and 16 were of females. Human lung tissue samples were analyzed by using the sandwich ELISA method. The results indicated a statistically significant increase in TNF-α and IL-3 concentration in fatal asphyxial deaths, including those caused by hanging, drowning, and smothering. Mean ± SD in asphyxial and non-asphyxial cases for the TNF-α and IL-3 concentration statistically analysed. In asphyxial cases, the average IL-3 concentration (Conc.) was 1558.50 ± 350.53 pg/ml, and the average TNF-α concentration (Conc.) was 499.75 ± 479.41 pg/ml. In contrast, in non-asphyxial cases, the average IL-3 concentration (Conc.) was found to be 849.73 ± 484.99 pg/ml, and the average TNF-α concentration (Conc.) was 208.08 ± 81.23 pg/ml. The mean change in IL-3 and TNF-α (Conc.) values are found to significant (<0.01) in asphyxial cases as compared to non-asphyxial cases. The ROC (Receiver operating characteristic curve) analysis revealed that TNF-α (AUC = 0.89) and IL-3 (AUC = 0.87) concentration (conc.) were stronger predictors of asphyxial deaths with an optimal cut-off value of 455.20 pg/ml for TNF-alpha and 1700.62 pg/ml for IL-3 respectively. Our findings imply that mast cells (MC) are critical in fatal hypoxia-related mortality and that TNF-α and IL-3 can be reliable markers for detecting mast cells in asphyxial deaths. It could be very beneficial to forensic pathologists tasked with differentiating fatal asphyxial fatalities from other causes of death.


Assuntos
Asfixia , Fator de Necrose Tumoral alfa , Masculino , Feminino , Humanos , Adulto , Interleucina-3 , Pulmão/patologia , Patologia Legal/métodos
17.
Front Immunol ; 14: 1130600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275910

RESUMO

Myeloid-derived suppressor cells (MDSC) represent major regulators of immune responses, which can control T cells via their inducible nitric oxide synthase (iNOS)- and arginase 1 (Arg1)-mediated effector functions. While GM-CSF is well documented to promote MDSC development, little is known about this potential of IL-3, an established growth factor for mast cells. Here, we show that IL-3, similar to GM-CSF, generates monocytic MDSC (M-MDSC) from murine bone marrow (BM) cells after 3 days of in vitro culture. At this time point, predominantly CD11b+ CD49a+ monocytic and CD11b+ CD49a- FcεR I- neutrophilic cells were detectable, while CD11blow/neg FcεR I+ mast cells accumulated only after extended culture periods. Both growth factors were equivalent in generating M-MDSC with respect to phenotype, cell yield and typical surface markers. However, IL-3 generated M-MDSC produced less TNF, IL-1ß and IL-10 after activation with LPS + IFN-γ but showed higher Arg1 expression compared to GM-CSF generated M-MDSC. Arg1 was further induced together with iNOS after MDSC activation. Accordingly, an increased Arg1-dependent suppressor activity by the IL-3 generated M-MDSC was observed using respective iNOS and Arg1 inhibitors. Together, these data indicate that M-MDSC can be generated in vitro by IL-3, similar to GM-CSF, but with increased Arg1 expression and Arg1-mediated suppression capacity. This protocol now allows further in vitro studies on the role of IL-3 for MDSC biology.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Supressoras Mieloides , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-3/farmacologia , Arginase/metabolismo , Medula Óssea/metabolismo , Integrina alfa1
18.
Nutr Res ; 116: 12-23, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37320947

RESUMO

Protein restriction (PR) leads to bone marrow hypoplasia with changes in stromal cellularity components of the extracellular matrix in hematopoietic stem cells (HSCs). However, the underlying signaling mechanisms are poorly understood. We hypothesize that PR impairs the HSC mitogen-activated protein kinase (MAPK) signaling pathway response activation. Our aim is to evaluate the activation of MAPK and interleukin-3 (IL-3) proteins in HSC to explain PR-induced bone marrow hypoplasia, which causes altered proliferation and differentiation. C57BL/6 male mice were subjected to a low-protein diet (2% protein) or normoproteic (12% protein). PKC, PLCγ2, CaMKII, AKT, STAT3/5, ERK1/2, JNK, and p38d phosphorylation were evaluated by flow cytometry, and GATA1/2, PU.1, C/EBPα, NF-E2, and Ikz-3 genes (mRNAs) assessed by quantitative real-time-polymerase chain reaction. Pathway proteins, such as PLCγ2, JAK2, STAT3/5, PKC, and RAS do not respond to the IL-3 stimulus in PR, leading to lower activation of ERK1/2 and Ca2+ signaling pathways, consequently lowering the production of hematopoietic transcription factors. Colony forming units granulocyte-macrophage and colony forming units macrophage formation are impaired in PR even after being stimulated with IL-3. Long-term hematopoietic stem cells, short-term hematopoietic stem cells, granulocyte myeloid progenitor, and megakaryocyte-erythroid progenitor cells were significantly reduced in PR animals. This study shows for the first time that activation of MAPK pathway key proteins in HSCs is impaired in cases of PR. Several pathway proteins, such as PLCγ2, JAK2, STAT3, PKC, and RAS do not respond to IL-3 stimulation, leading to lower activation of extracellular signal-regulated protein kinase 1/2 and consequently lower production of hematopoietic transcription factors GATA1/2, PU.1, C/EBPa, NF-E2, and Ikz3. These changes result in a reduction in colony-forming units, proliferation, and differentiation, leading to hypocellularity.


Assuntos
Dieta com Restrição de Proteínas , Células-Tronco Hematopoéticas , Proteínas Quinases Ativadas por Mitógeno , Animais , Masculino , Camundongos , Interleucina-3 , Camundongos Endogâmicos C57BL , Fosfolipase C gama , Transdução de Sinais , Fatores de Transcrição
19.
Exp Hematol ; 124: 36-44.e3, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271449

RESUMO

Colony-forming unit (CFU) assays are a powerful tool in hematopoietic research because they allow researchers to functionally test the lineage potential of individual stem and progenitor cells. Assaying for lineage potential is important for determining and validating the identity of progenitor populations isolated by methods such as fluorescence-activated cell sorting (FACS). However, current methods for CFU assays are limited in their ability to robustly assay multipotent progenitors with the ability to differentiate down the myeloid, erythroid, and megakaryocytic lineages because of the lack of specific growth factors necessary for certain lineage outputs. In addition, manual counting of colony types is subjective resulting in user to user variability in assessments of cell types based on colony and cell morphologies. We demonstrate that the addition of granulocyte colony-stimulating factor (G-CSF), macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF into a collagen-based MegaCult medium containing IL-3, IL-6, SCF, EPO, and TPO allows for the differentiation of common myeloid progenitors into expected proportions of colonies containing granulocytic (G), monocytic (M), erythroid (E), and megakaryocytic (Mk) cells. Additionally, we demonstrate an objective method using in situ immunofluorescence (IF) with anti-CD66b, anti-CD14, anti-CD235a, and anti-CD41 to detect G, M, E, and Mk cells, respectively. IF stained colonies can be analyzed individually at a microscope or using high-throughput microscopy. Thus, our improvements to the culture conditions and method for assay readout increase the accuracy, reproducibility, and throughput of the myeloid CFU assay.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-3 , Humanos , Reprodutibilidade dos Testes , Células-Tronco Hematopoéticas , Ensaio de Unidades Formadoras de Colônias , Células Cultivadas
20.
Int J Hematol ; 118(2): 277-287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37173550

RESUMO

The NUP98::NSD1 fusion gene is associated with extremely poor prognosis in patients with acute myeloid leukemia (AML). NUP98::NSD1 induces self-renewal and blocks differentiation of hematopoietic stem cells, leading to development of leukemia. Despite its association with poor prognosis, targeted therapy for NUP98::NSD1-positive AML is lacking, as the details of NUP98::NSD1 function are unknown. Here, we generated 32D cells (a murine interleukin-3 (IL-3)-dependent myeloid progenitor cell line) expressing mouse Nup98::Nsd1 to explore the function of NUP98::NSD1 in AML, including comprehensive gene expression analysis. We identified two properties of Nup98::Nsd1 + 32D cells in vitro. First, Nup98::Nsd1 promoted blocking of AML cell differentiation, consistent with a previous report. Second, Nup98::Nsd1 increased dependence on IL-3 for cell proliferation, due to overexpression of the alpha subunit of the IL-3 receptor (IL3-RA, also known as CD123). Consistent with our in vitro data, IL3-RA was also upregulated in samples from patients with NUP98::NSD1-positive AML. These results highlight CD123 as a potential new therapeutic target in NUP98::NSD1-positive AML.


Assuntos
Interleucina-3 , Animais , Camundongos , Histona-Lisina N-Metiltransferase , Interleucina-3/genética , Interleucina-3/metabolismo , Subunidade alfa de Receptor de Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA